502 research outputs found

    Gerbu adjuvant modulates the immune response and thus the course of infection in C56BL/6 mice immunised with Echinococcus multilocularis rec14-3-3 protein

    Get PDF
    Vaccination with Echinococcus multilocularis 14-3-3 protein can protect mice against primary E. multilocularis infection. The present study investigated the efficacy and efficiency of the adjuvant muramyl dipeptide Gerbu, alone or together with recombinant 14-3-3 protein, to modulate the course of secondary E. multilocularis infection in C56BL/6 mice. The application of Gerbu alone already resulted in a parasite weight reduction when compared with infected control mice, while rec14-3-3 did not add to this effect. Immunological parameters were concurrently assessed with a mixed cell reaction including bone marrow-derived dendritic cells (BMDCs) together with lymph node cells from mice with or without immunisation and/or infection. While mice having received Gerbu adjuvant were found to highly proliferate in response to co-cultivation with 14-3-3-stimulated bone marrow dendritic cells, a sensitisation of BMDCs with vesicle fluid (VF) antigen lead to a striking decrease of the lymphoproliferative response in comparison to that of control mice, raising the hypothesis that immunosuppressive components may be part of this VF-antigen. Anti-14-3-3 antibody production was only found in those mice that had been previously 14-3-3-immunised, whereas all other only-infected mice failed to produce such antibodies. Conclusively, Gerbu adjuvant appears to directly generate a non-specific immune response that contributes to the control of the metacestode growth, putatively in association with a BMDC activity suppressed by components of the VF-antige

    Echinococcus multilocularis and Its Intermediate Host: A Model of Parasite-Host Interplay

    Get PDF
    Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-β, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-α, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease

    Cryopreservation and long-term in vitro maintenance of second-stage larvae of Toxocara canis.

    Get PDF
    Second stage larvae of Toxocara canis were isolated from developed eggs, frozen in Eagle's Minimal Essential Medium with 5% dimethyl sulfoxide or 10% glycerol as cryoprotectants according to two cooling schedules and maintained in liquid nitrogen for 1 week. After thawing, the previously frozen larvae (FL) and unfrozen controls (CL) were maintained in a chemically defined medium in vitro for 35 weeks. While CL had motility rates around 95% to 97% throughout the experiment, previously frozen larvae (FL) exhibited rates of 48%-58% at the beginning and of 19%-39% at the end of the 35 week in vitro maintenance period. The surviving FL and CL larvae proved to be infective for mice. Excretory/secretory (ES) antigens isolated from several batches of culture medium in which FL and CL had been maintained reacted in the ELISA with human sera containing antibodies against Toxocara. Antigens from FL and CL separated by SDS-PAGE and silver-stained showed some differences in polypeptide patterns. Western-blot analysis revealed that these differences were not related to antigenic polypeptides but were most likely caused by substances without antigenic properties originating from dead and/or degenerating larvae. It can be concluded that ES antigens produced by previously frozen larvae are essentially the same as those derived from unfrozen controls. The value of cryopreservation of T. canis larvae for routine production of ES antigens will be further evaluated

    Echinococcus granulosus strain typing in Bulgaria: the G1 genotype is predominant in intermediate and definitive wild hosts

    Get PDF
    Addressing the genetic variability in Echinococcus granulosus is epidemiologically important, as strain characteristics may influence the local transmission patterns of zoonotic cystic echinococcosis. To classify the genotype(s) present in intermediate (pig, cattle and sheep) and definitive (jackal and wolf) hosts in Bulgaria, a DNA-based approach was used to assess parasite protoscoleces or strobiles. Genes corresponding to coding and non-coding regions of the nuclear and mitochondrial genome (ND-1, HBX, Act II, AgB-1) were amplified by PCR and subsequently sequenced. The sequences resolved were all found to be identical to those published for the common sheep strain of E. granulosus, indicating that the G1 genotype is predominant in Bulgaria. One microvariant for ND-1 was found in the pig isolates; however no epidemiological significance was attributed to this findin

    In vitro induction of lymph node cell proliferation by mouse bone marrow dendritic cells following stimulation with different Echinococcus multilocularis antigens

    Get PDF
    The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infectio

    Precolostral serology in calves born from Neospora -seropositive mothers

    Get PDF
    The present study was designed to exploratively determine (a) how many healthy calves, born from seropositive mothers, were also precolostrally seropositive; (b) how many precolostrally negative calves became postcolostrally positive; and (c) in these calves, how the IgG1/IgG2 situation developed pre- and postcolostrally. All calves were born from mothers that were determined to be seropositive in a conventional Neospora caninum-ELISA and by immunoblotting. When the diagnostic performance of the conventional ELISA was compared with that of immunoblotting and an IgG1/IgG2-ELISA in the calves, the latter two exhibited a higher sensitivity: From a total of 15 precolostral calf sera, 7 were positive in the conventional ELISA (diagnostic sensitivity 47%) compared to 15 that were positive by immunoblotting (diagnostic sensitivity 100%) and 12 that were positive by the IgG1/IgG2-ELISA (diagnostic sensitivity 80%). With regard to IgG1/IgG2 findings in the dams, IgG2 appeared as the dominant subclass in the humoral immune response of adult cattle, while in calves, IgG1 appeared as the main prenatally/precolostrally reactive antibody isotype. Provided that precolostral seropositivity reflects postnatal persistent infection with N. caninum, we then postulate that, basically, all of our study calves born form N. caninum-seropositive mothers were prenatally infected with the parasite, and may, thus, all become members of the next transmitting generatio

    Neospora caninum immunoblotting improves serodiagnosisof bovine neosporosis

    Get PDF
    Neospora caninum ranges among the major causes of infectious abortion in cattle worldwide. The present study was designed to improve the serodiagnostic tools by complementing a conventional ELISA with a highly sensitive and species-specific N. caninum immunoblot. To evaluate this test combination, sera from several groups of cows were tested. The first group, consisting of experimentally infected calves, showed that immunoblot antibody reactivities were detectable 1 to 3days earlier than those found in ELISA. The first immunodominant bands that appeared were a 29-kDa (NcSAG1) and a 36-kDa (NcSRS2) antigen. Other groups, based upon naturally infected cattle, were used to compare the diagnostic sensitivity of ELISA and immunoblotting. Overall, N. caninum immunoblotting exhibited a higher sensitivity (98%) than ELISA (87%). Conversely, immunoblotting also confirm in two other cases, true transient negativation in some animals. In general, banding patterns and band staining intensity correlated to the semiquantitative ELISA findings. On the other hand, the banding pattern could not be used to discriminate between sera from animals with a recent abortion and those of cows with latent N. caninum infection. We also addressed putative cross-reactions due to infection with Toxoplasma gondii. Sera from animals with a serologically proven T. gondii infection were either clearly negative by Neospora immunoblotting or they yielded a specific immunoblot antibody profile indicating a double infection with N. caninum. Sera from animals with positive findings in both Toxoplasma and Neospora ELISA thus provided dichotomic results in the immunoblot by allowing to confirm or to rule out the specificity of the antibody reaction in Neospora ELISA. Altogether, our findings demonstrate that N. caninum immunoblotting is a very sensitive and specific complementary tool to improve the serology for N. caninum infections in cattl

    Immunology and morphology studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestodes.

    Get PDF
    The larval stage of Echinococcus multilocularis causes alveolar echinococcosis (AE) in various mammals, including humans. Traditionally metacestodes are maintained in the laboratory by serial transplantation passages into susceptible animals such as mice or gerbils. However, in animal models it has always been difficult to draw definite conclusions about the factors modulating metacestode differentiation, and investigations on gene expression and respective regulation have been hampered by the complexicity of the host-parasite interplay. This paper describes the maintenance and proliferation of E. multilocularis metacestodes as well as the formation of protoscolices in a chemically defined medium devoid of host influence. The interactive role of a heterologous human cell line (CACO2) in the in vitro development of metacestodes was also assessed. The morphology and ultrastructure of in vitro-generated metacestodes was studied using scanning (SEM) and transmission electron microscopy (TEM). Different cultivation procedures were analyzed in terms of expression of B- and T-cell epitopes and of the relevant laminated layer-antigen Em2; the exact localization of this antigen was further demonstrated by immunogold electron microscopy

    Humoral immune reaction of newborn calves congenitally infected with Neospora caninum and experimentally treated with toltrazuril

    Get PDF
    Neospora caninum is widely recognized as one of the most important infectious organisms causing abortion and stillbirth in cattle. This parasite causes severe economical losses worldwide. Infection is mostly passed vertically from mother to calf during pregnancy. Under certain circumstances, an infection can lead to abortion, but in most cases it results in a chronically infected calf, which itself will represent the next endogenously infectious generation. So far, no reliable therapeutic or metaphylactic tool has been developed. One possibility to control the problem may consist of treating newborn calves that became vertically infected by a persistently infected mother. This may allow parasite-free offspring. The aim of the present study was to address the questions: (1) can serology be used to assess efficiency of treatment in toltrazuril-medicated animals? and (2) is a strategic prevention measure possible by means of producing N. caninum-free calves from positive cows? Calves from Neospora-seropositive cows and heifers were randomly split into two different medication groups: 36 calves were medicated with toltrazuril and 36 calves obtained a placebo. Medication (20mg toltrazuril per kg bw) was administered three times, every second day, within the 7days post natum. Three months after medication, there was no difference in antibody reactivity between the two groups. At later time points (4-6months), however, significant differences were found, as explained by a strong humoral immunity after chemotherapeutical affection of parasites, while the placebo-treated animals only responded weakly to the persistent infection. In summary, we concluded that (1) serology was not an entirely appropriate tool to answer our initial question and (2) toltrazuril has the potential to eliminate N. caninum in newborn calves. As a consequence, we plan to follow up toltrazuril-medicated calves clinically and serologically over a longer period and investigate if they give birth to Neospora-free calve
    corecore